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Abstract

Simulation of complex 3-dimensional phenomena generate
data sets which are hard to comprehend using conventional
2-dimensionally oriented visualization tools. One way to
overcome this limitation is to employ various volume
visualization techniques. While early volume visualization
techniques worked well on simple scalar volumes they
failed to exploit frame buffer hardware capabilities and
handle higher order data such as vector fields. Work at
Lawrence Livermore National Laboratory has centered on
developing new techniques and extending existing
techniques. This paper describes the various algorithms
developed for volume rendering, and presents new methods
of examining vector fields in a volumetric fashion.

Introduction

Computer simulations dealing with the
atmosphere, the ocean, hydrodynamics, electro-
magnetics,  structural response, and
environmental clean up, generate very large and
complex data sets consisting of not only several
scalar variables, but also vector and tensor
quantities. Understanding an individual scalar
field from a three-dimensional simulation is often
difficult with current visualization tools.
Understanding 3D vector fields and complex
relationships is even more arduous. In order to
understand the tens of gigabytes of data being
generated from today's supercomputers, better
visualization techniques and tools are needed.
Better visualization tools are even more urgent as
we progress to massively parallel architectures
and larger more complex problems.

Volume rendering allows us to examine a
substantial amount of a single 3D scalar field at a
single time step. Research into visualizing 3D
scalar fields has progressed over the past few
years from iso-contour surfaces, to direct volume
rendering of regularly gridded data, and then
irregularly structured data, but all methods
operate on a single scalar field. A minor amount
of effort has been placed on understanding the
interactions between several scalar fields. Even

less effort has been directed towards
understanding vector or tensor fields. Correcting
these deficiencies has been the thrust of our
research. This paper describes the various
algorithms developed for volume rendering, and
presents new methods of examining vector fields
in a volumetric fashion.

Volume Rendering

The rendering of three-dimensional scalar fields
has received much attention over the past several
years. There are three common ways to visualize
a scalar function in a volume (1) interactively
move a color coded 2D slice through the volume
[Nielson90], (2) draw contour surfaces
[Lorensen87], or (3) integrate a continuos volume
density along viewing rays [Max90]. The second
method is a generalization of plotting contour
lines in 2D. The other methods generalize the
color coding of a 2D scalar field, although the 3D
color field can only be viewed in either 2D slices
or projections. The first two methods are
generally termed indirect volume rendering, while
the third method is termed direct vo lume
rendering, or simply volume rendering. These
terms imply the basic architecture of the
techniques: indirect volume rendering converts
the 3D field into geometric surface primitives
which are then rendered to form an image, while
direct volume rendering converts the field directly
into the image. Henceforth, we will use the term
volume rendering to refer strictly to direct volume
rendering.

There has been much research on volume
rendering algorithms over the past few years,
leading to several competing algorithms. Four
common approaches to volume rendering are (1)
ray tracing, (2) analytical scan conversion, (3)
hardware compositing, and (4) splatting. Various
advantages/disadvantages exist with each of these
algorithms. Many flavors of each of these
algorithms also exist. We have implemented a
version of each of these and extended them to



examine vector fields rather than or in addition to
a single scalar field.

Before describing each of these algorithms and
our extensions to them, some background
information is useful. The basic premise of
volume rendering is to simulate the absorption
and scattering of light passing through a volume.
There have been several computer graphics
papers on the scattering, transmission, and
shadowing of light propagating through clouds of
particles. Kajiya and Von Herzen [Kajiya84],
Rushmeier and Torrence [Rushmeier87], Blinn
[Blinn82], and Max [Max86a] [Max86b] all
suggest methods of correctly accounting for the
shadowing, but the computation required is
prohibitive. Instead, we chose to ignore the
shadowing entirely, and only occlude the light on
the way to the viewer, after a single scattering
event. This leads to the following very simple
illumination calculation. We model light as
ambient illumination shining equally from all
directions, and not shadowed along its path to
any scattering particle. Under these assumptions,
the result is the same as modeling glowing
particles, as in the density emitter model of
Sabella [Sabella88]. Sabella assumes that the
volume density ρ(x,y,z) glows with an energy

Cρ per unit length, and absorbs with an optical

density of τρ per unit length, where C and τ are
constants for any fixed material.

Consider a ray, R(t) = (x(t),y(t),z(t)), leaving the
eye and passing through the volume. Then the
total optical density of the cloud along the ray

from the eye to a point R(t) is τρ(u)
0

t

∫ du, so light

starting from P(t) is attenuated by the

transparency factor exp( − τρ(u)
0

t

∫ du ) [Blinn82].

The length dt of the ray glows with energy
Cρ(t)dt, so the total glow energy reaching the eye
is 

I = Cρ(t)e
− τρ(u)du

0

t

∫

0

1

∫ dt . (1)

These integrals can be calculated analytically
when C, τ , and ρ  are constant or linearly

interpolated within a volume cell [Max90],
[Williams92].

Current graphics hardware does not offer
assistance in calculate this integral directly. It
does however offer assistance in compositing or
alpha-blending two colors together and offers
support for texture mapping (placing a decal or
picture on an object). We strive to take full
advantage of these capabilities where appropriate.

Ray Tracing Volume Densities

Ray tracing is one method for solving the single
scattering illumination integral given above.  This
technique requires casting rays from a viewpoint
through a volume for each pixel in the output
image.  Various sampling and illumination
techniques are employed to approximate and
extend equation (1) (see [Upson88], [Levoy89],
or [Danskin92]). In our implementation we use
two types of sampling along a ray: one in which
the samples are evenly spaced and one where the
samples occur only on the faces of the rectilinear
data cells. In this latter cases the samples are
unevenly spaced. This approach to volume
rendering makes it easy to use very sophisticated
lighting or shading models at an increased
computational cost.

One approach to visualizing volumetric vector
fields is to map the vector field onto a scalar field
and then volume render the result. We [Cabral93]
have developed an algorithm, known as Line
Integral Convolution (LIC),  which performs this
mapping.  The technique can be thought of as a
data operator which filters a 3-dimensional input
image as a function of a 3-dimensional vector
field, producing an output 3-dimensional voxel
image.

For each each cell centered voxel containing a
vector, or vectel, a local parametrically defined
streamline is computed using a variable step
Euler's method. (Other streamline computation
techniques could be used, such as Runge-Kutta.
We chose the technique described in [Cabral93]
for reasons of efficiency and simplicity).  This
parametric curve, p(x,y,z,s),  is used to cut a 1-
dimensional slice out of the input image,
F(x,y,z).  The 1-dimensional slice can be thought
of as a signal in the curve's parameter, s. This
signal then filtered using a standard 1-
dimensional convolution. The general form of
this operator is given by the following integral



equation:

′F (x, y, z) =

F( p(x, y, z,s))k(s)ds
−L

L

∫

k(s)ds
−L

L

∫
(2)

where k(s)  is the convolution kernel and 2*L is
the length of the streamline. The denominator is a
normalization term designed to keep the
brightness of the output voxels in the range of the
input voxels. The LIC integral, eq. (2),  is
performed once for every vectel, producing a
scalar value for the corresponding output voxel.

If an isotropic, uncorrelated input image is used,
such as white noise, the LIC operator can be
thought of as correlating this noise image along
local vector streamlines. This produces an image
which on average is fairly homogeneous. Volume
rendering this image without first weighting either
the input or output image with another scalar field
would result in only visualizing the outer surface
of the volume. Figure 1 is a volumetric rendering
of an electrostatic vector field consisting of two
attractive charges. Here the input image is white
noise weighted by the magnitude of the vector
field. LIC is run on this input image and the
resulting scalar volume is then rendered using the
ray tracing approach described above.

Coherent Scan Conversion of Volume
Densit ies

Max, Hanrahan and Crawfis [Max90] describe a
technique for scan converting the back and front
faces of an individual volume cell, and integrating
the density of the rays passing through the front
and back faces. The algorithm is exact for density
fields which vary linearly. They also describe a
general sorting algorithm for Delaunay
triangulation, and discuss the intermixing of
contour surfaces and the density clouds.

We have made several extensions to this
algorithm, not documented in [Max90]. The
contour surface can be color coded using a
different scalar field than that used for the
contouring. A list of data fields is processed for
each vertex. One data field can specify the
contouring, another the color of the density
volume, and still another the opacity of the
density volume. More general mappings can be
used that take into account several data fields, the
vertex positions, and information indicating

which side of any contouring surfaces the vertex
lies on.

We have extended this algorithm to allow for the
contour surfaces to be covered with a three-
dimensional texture. In particular, we applied a
three-dimensional cloud texture to the contour
surfaces of the percent cloudiness field resulting
from a global climate simulation. We used the
wind velocities to advect the texture coordinates
given to this 3D texture, allowing the clouds to
move with the wind where appropriate, and
providing a sense of the wind blowing over the
clouds in other areas. Figure 2 is a still from an
HDTV animation done using this technique. The
volumetric rendering was turned off for this
image and an analytically computed atmospheric
haze was added.

Hardware Projection and Compositing of
Volume Densities

Shirley and Tuchman [Shirley90] describe an
algorithm for dividing tetrahedral volume cells
into up to four simpler tetrahedra. Each simple
tetrahedron projects to a screen triangle with two
vertices projecting to the same screen point A,
and two faces perpendicular to the screen. Thus
the thickness varies linearly from a maximum at A
to zero at the opposite edges. Shirley and
Tuchman compute the color and transparency at
each vertex, and use the shading hardware inside
the graphics rendering pipeline to interpolate these
values at each pixel. Then they use the "alpha
compositing" hardware to hide the background
image behind the tetrahedron, according to the
computed transparency, before adding in the new
color.

Since these computations can all be done by the
high speed hardware pipelines on modern
workstations, they are quite fast. However, as we
saw above, the correct transparency is an
exponential function of the optical density, which
is not linear. Thus, the density should be
interpolated linearly across the triangle and then
the exponential should be taken at every pixel. If
instead, the transparency is computed only at the
vertices, and then linearly interpolated across the
triangles, visible artifacts will result.

It is not possible to compute an exponential per
pixel inside current rendering pipelines, but an
equivalent result can be achieved using texture
mapping hardware. A 1D texture table is used,



which is addressed by the optical density, and
returns the transparency. The texture coordinate is
then specified as the optical density at each
vertex, and will be interpolated across the triangle
by the shading hardware, before being used as a
texture address. This gives an accurate
transparency for every pixel, and eliminates the
artifacts.

We use this algorithm for a new vector
visualization technique which we call flow
volumes [Max93b]. We have extended the
concept of stream lines or flow ribbons to their
volume equivalent. A seed polygon is placed into
the flow field under user control. This polygon
acts as a smoke generator. As the vector field
passes through the polygon, smoke is propagated
forward, sweeping out a volume (Figure 5)
which is subdivided into tetrahedra. Compression
and expansion of the volume due to the flow can
be taken into account by adjusting the opacity
based on the tetrahedron's volume. As the flow
volume expands, we employ an adaptive mesh
refinement technique to ensure the curvature of
the resulting volume is accurate. The complex
topology of the flow volume would require a
general sorting method to yield a valid back-to-
front sort. However, for this application, we can
require that the smoke or dye be a constant color
throughout the volume. It can then be shown
[Max93b] that the resulting integration of the
volume density is independent of the order the
volume cells are processed. Thus, no sorting is
required. Since we are only rendering the smoke,
and not an entire volume, and using the hardware
for the rendering, we have achieved real-time
interaction. We have also added additional
features that allow the user to watch moving puffs
of smoke, control the time propagation of the
smoke, and combine opaque geometry with the
smoke. Figure 4 shows an aerogel simulation,
where the tiny cubes are the zones containing the
aerogel, and the blue smoke represents a flow
through the aerogel.

Hardware Splatting of Volume Densities

Westover [Westover89] used an idea called
splatting, where each voxel is treated as a single
sampling point and a continuos 3D signal is
reconstructed. The contribution of each voxel
point to the volume density is then determined by
its reconstruction kernel, and these are
composited into the image independently in back-

to-front order. Westover [Westover90] later used
an accumulation buffer to reconstruct an entire
sheet's contribution before it is composited into
the image. Since the individual splats overlap,
this avoids problems in the sorting, however, a
much more noticeable change in the volume
density occurs when the arrangement into sheets
must change.

Laur and Hanrahan [Laur91] extended the
splatting technique to handle hierarchical
representations of the sampled data field. They
also approximated the gaussian used in the
reconstruction by a small polygonal mesh and
utilized the graphics hardware to render the splat.
This allowed for a quick coarse representation of
the data that evolved into a more accurate
representation adaptively. The Explorer product
from SGI uses a variant of this technique without
the adaptive refinement.

In reconstructing the 3D signal, a gaussian
function is usually used. An unattractive property
of this is its infinite extent. Every splat
theoretically contributes to the entire volume
density. Some finite extent is usually chosen and
the splat is either abruptly cut-off or forced to
zero. Max [Max92] uses an optimal quadratic
function with a limited extent for the
reconstruction of 2D signals. We [Crawfis93]
have extended this for a cubic function for the
reconstruction of 3D signals, which is optimal for
all viewing angles. Using this function as a
hardware texture map on a simple square splat
gives a more accurate rendering of the volume
density, and for large problems consisting of
many small splats is actually faster than using the
polygonal mesh of [Laur91]. We have added this
to the Explorer system.

We [Crawfis92] developed a methodology for
integrating a vector representation into the scalar
splat. This algorithm however uses a sampling
and reconstruction approach (which we called a
filter) and does not make use of the graphics
hardware. Figure 3. illustrates this technique for
the wind field of a global climate simulation. We
[Crawfis93] have now merged this concept with
volume rendering via splatting by extending the
texture splats above to include an anisotropic
representation of the vector field. The splat is not
only oriented perpendicular to the viewing
direction, but also rotated to align the texture with
the projected vector direction. A table of textures



with different vector lengths is used to
foreshorten the vector as its direction becomes
parallel to the viewing direction. By using the
appropriate controls of the texture mapping
hardware, the volume density can be represented
using one color scheme, and the vector field
represented using another. Figure 6 shows the
percent cloudiness field and the wind velocities
for the global climate simulation. By cycling
through a sequence of textures with changing
displacements, we can make the textures move in
the flow specified by the vector field.

Sorting

The scan conversion, hardware projection, and
splatting methods of volume rendering all require
a back to front sort of the volume cells. For
rectangular lattices, the location of the viewpoint
within the data volume (or of its projection onto a
face or edge of the data volume) can easily be
used to specify a sorting order. This sorting
method extends recursively to octree or other
rectilinear adaptive mesh refinements. For a more
general mesh of convex data without holes,
sorting can be done using a topological sort
[Knuth73] [Max90] on a directed graph
representing cell adjacency (with the direction of
an edge specifying which of the two adjunct cells
is in front). This sort may detect cycles, but it can
be proved that cycles do not occur for Delaunay
triangulations. [Edelsbrunner89], [Max90], or for
the particular geometries which occur in our
climate simulations [Max93a]. We are also
working on a version of the Newell, Newell, and
Sancha sort [Newell72] applied to volume cells
instead of to polygons. This algorithm will split
offending cells when cycles are detected. It also
does not require the adjacency information, which
may not be available in certain situations (for
example, finite element simulations with sliding
interfaces), and can deal with non convex
volumes with holes. Williams [Williams91] also
generalizes the directed graph method to non-
convex data volumes, but his method is not
guaranteed to be correct.

Conclusions

We have explored the use of volume rendering
for scientific visualization and extended the
algorithms for representing vector field data as
well as scalar field data. The algorithms cover a
wide gamut of techniques, from the very
interactive flow volume generator for studying

specific areas, to the ray-traced vector volumes
and vector splatting techniques for representing
global views of the vector field. These algorithms
are a necessary step towards better visualization
techniques for large data sets produced from
complex three-dimensional simulations on
supercomputers and massively parallel machines.

This paper has given a broad overview of our
work. More details can be found in the
references: [Max90], [Crawfis91], [Crawfis92],
[Max92], [Cabral93], [Crawfis93], [Max93a],
and [Max93b]. These papers also give other new
material on the usage of volume rendering and
our extensions to vector field rendering.

Future Work

Most of the extensions mentioned here are in their
early development. Much work is still needed in
applying them to various application data and
making refinements. In particular, the proper
choice of textures for the textured isocontour and
the vector splatting techniques is an open area of
research. Better subdivision and splitting
algorithms are needed for the flow volume
algorithm. We have also developed the basic
framework for multivariate representations, but
have only tried it out for very simple mappings.
More complex mappings (presumably application
specific) need to be studied, and a more efficient
and flexible framework put into place.
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Figure 4. A flow volume weaving through an aerogel substance.

Figure 5. The Flow Volume Algorithm applied to the
global climate data set.

Figure 6. The clouds and wind fields rendered using the textured
splats algorithm.

Figure 2. The percent cloudiness field rendered using
a 3D texture advected by the wind field.

Figure 3. The vector filter algorithm applied to the wind field. Upper winds
are in red, surface winds are in cyan.

Figure 1. Electrostatic field consisting of 2 charges, volumetrically ray
traced using the vector to scalar converter.


